

Jet Propulsion Laboratory California Institute of Technology Discovery Program Overview

- Started in 1992
 - Principal Investigator (PI) Led
 - Science Missions
 - Cost Capped
 - Competed Proposals
- 13-14th Discovery Round announced February 2014
 - Step 1: 28 concepts submitted (early) 2015)
 - Step 2: Downselected to five missions (late 2016)
- Two programs selected in January 2017 (Psyche, Lucy)

Dawn – Discovery Mission #9

Insight – Discovery Mission #12

Journey to a Metal World

Largest metal asteroid

Diameter ~200 km

High density

Spectra: 10% silicate, 90% metal

Radar shows the right albedo, high dielectric constant, high thermal inertia

Strong testable hypothesis:

Is Psyche the exposed core of larger differentiated body?

Jet Propulsion Laboratory California Institute of Technology Accretionary vs. Hit-and-Run Impacts

Proposed Science Payloads

Multispectral Imager

- ASU lead/MSSS built
- Redundant units
- 5.9 kg total
- 8 filters
- 35 m/pixel highest orbit
- 5 m/pixel lowest orbit
- MSL Mastcam heritage

Gamma Ray and Neutron Spectrometer

- 12.1 kg, 2-m boom
- APL lead
- High Purity Ge detector
- He³ sensor (thermal neutrons)
- MESSENGER heritage

Magnetometer

- MIT lead/UCLA built
- 2 sensors
- 1.5 kg total
- 2-m boom (gradiometer)
- 0.2 100,000 nT range
- MMS, Insight heritage

2022 Projected Mission Timeline

Cruise: 3.4 years

Five panel solar arrays
~21 kW BOL

Today's Baseline: 2022 with Five Panel array

As Originally Selected 2023 with Four Panel (17 kW) array

2021			2022			2023			2024			2025			2026			2027				2028			2029				2030				2031			2032				2033				
Q1 Q2 Q	3 Q4	Q1	Q2 Q	3 Q4	Q1	Q2 (Q3 Q	4 Q1	Q2	Q3 (Q4 (21 Q	2 Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2 (23 Q	4 Q1	Q	2 Q3	Q4	Q1	Q2	Q3 (24 9	X (Q2 (13 Q	4 Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
																																						1						
	Primary 2021 Launch								55 months					20 mon			nths				н																							
														į į							1													-			-		- 1					
	- 1			New	202	2 La	unch					41	. mon	ths		2	22 m	ont	ths		1										+													

Jet Propulsion Laboratory California Institute of Technology Science Operations Concept

Orbit A: 40 days (29 orbits @32.4 hrs, ~700 km alt) Magnetic field detection requirements complete

Orbit B: 50 days (107 orbits @11.2 hrs, ~290 km alt) Topography requirements complete **Spectral Imaging** requirements complete

Orbit C: 100 days (369 orbits @6.5 hrs, ~170 km alt) **Gravity** requirements complete

Orbit D: 100 days (585 orbits @4.1 hrs, ~85 km alt) Elemental **composition** requirements complete

Science Operations Similar to Dawn Mission Profile

Deep Space Optical Communications Concept

- DSOC is a technology demonstration provided as GFE to Psyche
- Flight Laser Transmitter (FLT) will be mounted on the Psyche spacecraft and pointed at Earth for DSOC operations
- Psyche will treat DSOC as a payload element, not a required flight uplink/downlink path
- DSOC operations are planned for 2 hours per month, during portions of Cruise Phase
- Psyche coordinates with the DSOC project for development and implementation

DSOC consists of 3 subsystems:
Ground Laser Transmitter (GLT)
Ground Laser Receiver (GLR)
Flight Laser Transceiver (FLT)

Dawn: Enabled by NSTAR/DS-1 Technology

Proposed 2001, Launched 2007

NSTAR Ion Thruster

NSTAR PPU

Nine years since Dawn and NSTAR What is available for Electric Propulsion *today*?

SPT-140 Hall Thruster

- 29 Electric Propulsion (SPT-100) flights to date...
- Over 100 SSL 1300 spacecraft launched
- Over 14 high power (> 20 kW) spacecraft on orbit

Similarities...

High Power

Electric Propulsion

High Reliability, Long Lifetime

Differences....

Launch

Distance = Autonomy

Can we adapt GEO Electric Propulsion spacecraft to Deep Space?

TOURNE TO THE WOOD OF THE WOOD

- Composite Structure
- High Power
- Electric Propulsion

Psyche

Autonomous Ops& Fault Protection

JPL Flight Software and C&DH

Psyche Baseline Design vs. SSL GEO Comsat

SSL High Power GEO Spacecraft

Psyche Baseline Design

JPL-SSL: A Complementary

